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Impact of training dataset size on technical performance of a deep learning model 
for detection and quantification of lymphomatous disease on 18F-FDG PET/CT

FDG PET/CT is widely used for staging high-grade lymphoma. Artificial
intelligence has the potential to improve efficiency and enable use of
advanced quantification methods in a clinical setting. Here we
investigate the impact of the amount of data used to train a deep
learning (DL) model on detection and segmentation performance.

Materials & Methods

G.V. Ionescu1, R. Frood2,3, A.F. Scarsbrook2,3 and J.M.Y. Willaime1

(1) Mirada Medical Ltd., Oxford, UK, (2) Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK, 
(3) Leeds Institute of Health Research, University of Leeds, Leeds, UK

Objective

Pre-treatment FDG PET/CT scans of 420 patients with a total of
6150 lymphoma lesions segmented as ground truth by
experienced PET- reporters were randomly split into training (300)
and test sets (120).

A DL model, consisting of an ensemble of patch-based 3D
DenseNet, was trained using various dataset sizes: N = 50, 100,
150, 200, 250 and 300, randomly sampled from a total of 300
cases.

Lesion detection performance was assessed using sensitivity and
false positives (FPs) per patient, and true positives to false
positives ratio (TPs/FPs) across the test set.

Results

A deep learning model was relatively unaffected by the size of the
training dataset in its ability to detect lymphoma lesions on PET/CT scans.
However, more training data reduced FP rate, and improved agreement
between prediction and ground truth segmentations for lesion volume
SUVmean, TMV and TLG.

Conclusion

AcknowledgementsLesion detection sensitivity varied between 82% to 88%, whilst FPs per
patient decreased with more training data (see Table 1). TPs/FPs improved
as the training dataset size increased.

Table 2 shows the segmentation performance for the six models: voxel-
wise sensitivity, PPV and Dice score.

Bland Altman analysis showed improvement in Limits of Agreement (LoA)
for lesion volume, TMV and TLG with more training data (See Figure 2).

Figure 1: Examples of predictions for N=50 and N=300.
Maximum intensity projections (MIP) of PET images with
overlaying contours, showing true positives (green), false
positives (orange) and false negatives (red).

Table 2: Segmentation performance. Median sensitivity, PPV
and Dice obtained for different dataset sizes.
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Dataset size 50 100 150 200 250 300

Sensitivity (%) 82 83 88 83 83 86

FPs 9 4 4 4 3 3

TPs/FPs 0.73 1.42 1.40 1.43 1.67 1.69

Table 1: Lesion detection performance obtained for different
dataset sizes. Median sensitivity was similar across models. FPs
decreased with increasing dataset size. TPs/FPs ratio improved with
more training data.

Dataset size 50 100 150 200 250 300

Sensitivity (%) 91 93 92 91 89 93

PPV (%) 75 82 83 86 88 88

Dice (%) 78 83 84 85 85 86

Figure 2: Statistics from Bland Altman analysis for SUVmean (A), Volume (B), TMV
(C) and TLG (D). Median difference, lower and upper limits of agreement (LoA)
calculated as 5th and 95th percentile are reported for the six models trained with
different dataset sizes.

Segmentation and quantification performance were evaluated
using sensitivity, positive predictive value (PPV), Dice score and
non-parametric Bland Altman analysis for SUVmax and SUVmean per
lesion, and total metabolic volume (TMV) and total lesion glycolysis
(TLG) per patient.
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